# The New Drainage Manual

Partnering Conference August 2010

David Moses Chief Drainage Engineer Kentucky Transportation Cabinet

> David Lanham Palmer Engineering



IF YOU THINK THE PROBLEMS WE CREATE ARE BAD, JUST WAIT UNTIL YOU SEE OUR SOLUTIONS.

### Association of State Floodplain Managers National Conference

- May 15-20, 2011 Galt House, Louisville
- http://www.kymitigation.org/ASFPM.html
- 100 Speakers, 1200 Participants

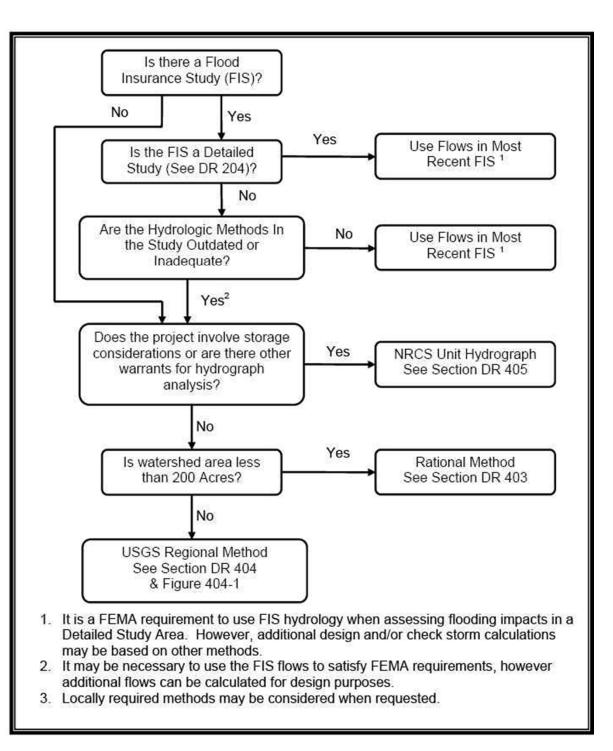




# **Presentation Outline**

 Manual Progress Manual Policy Released in July – Hydrology Policy **Temporary Drainage Structures** New Policy Currently Under Development – Drainage Folder Structure - Software – Water Related Impacts – Bore & Jack

# Manual Progress


# Progress To Date

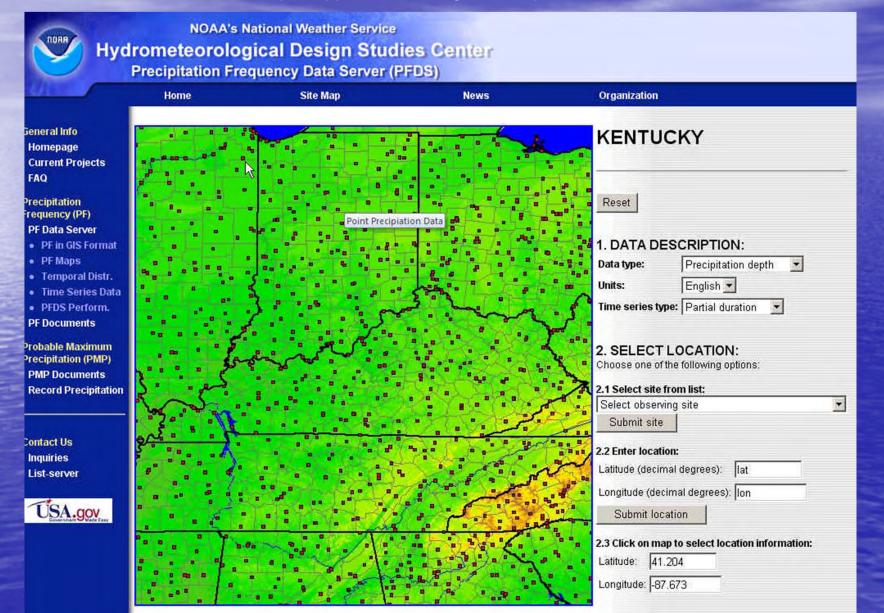
| OLD MANUAL                          | NEW MANUAL                                         |
|-------------------------------------|----------------------------------------------------|
| TABLE OF CONTENTS & TITLE           | TABLE OF CONTENTS 3                                |
| CHAPTER 1 - INTRODUCTION            | DR 100 - Introduction                              |
| CHAPTER 2 - FLOODPLAIN MANAGEMENT   | DR 200 - Stormwater & Floodplain Management        |
| CHAPTER 3 - DRAINAGE FOLDERS        | DR 300 - Drainage Folders                          |
| CHAPTER 4 - DISCHARGE               | DR 400 - Hydrology                                 |
| CHAPTER 5 - CHANNELS AND DITCHES    | DR 500 - Open Channels                             |
| CHAPTER 6 - CULVERTS AND HEADWALLS  | DR 600 - Culverts & Headwalls                      |
| CHAPTER 7 - INLETS AND STORM SEWERS | DR 700 - Inlets and Storm Sewers                   |
| CHAPTER 8 - BRIDGES                 | DR 800 - Bridges                                   |
| CHAPTER 9 - DAMS AND STORAGE        | DR 900 - Storage                                   |
| CHAPTER 10 - EROSION CONTROL        | DR 1000 - Erosion                                  |
| CHAPTER 11 - RESTORATION            | (Deleted)                                          |
|                                     | DR 1100 - Miscellaneous <sup>2</sup>               |
|                                     | Subject 1101 - Temporary Drainage Facilities       |
|                                     | Subject 1102 - Computer Applications               |
|                                     | Subject 1103 - Plan Requirements                   |
|                                     | Subject 1104 - Field Data Collection               |
| CHAPTER 12 - COMPUTER PROGRAMS      | (Deleted)                                          |
| APPENDIX ADRAINAGE FORMS            | (Will be inserted throughout the various chapters) |
| APPENDIX BSAMPLE DRAINAGE FOLDER    |                                                    |
| APPENDIX C GLOSSARY                 | Glossary                                           |

# Policy Released In July 2010

**DR 400 Hydrology Changes**  Project Specific Precipitation Values • Updated USGS Regional Method Statewide – Jefferson County Adoption of NRCS Unit Hydrograph Method (When Hydrograph Analysis is Required) Fully Developed Watershed assumptions

### Hydrologic Methods Flowchart




### **Precipitation Data**

 In 2004, the National Oceanic and Atmospheric Administration released "NOAA Atlas 14 Volume 2 for the Ohio Valley Region"

Precipitation values (depth and intensities) from this study are available in a web based application called the Precipitation Frequency Data Server.

### Precipitation Frequency Data Server

http://dipper.nws.noaa.gov/hdsc/pfds/



# Data Table



### POINT PRECIPITATION FREQUENCY ESTIMATES FROM NOAA ATLAS 14



Kentucky 36.786 N 84.161 W 951 feet from "Precipitation-Frequency Atlas of the United States" NOAA Atlas 14, Volume 2, Version 3 G.M. Bonnin, D. Martin, B. Lin, T. Parzybok, M. Yekta, and D. Riley NOAA, National Weather Service, Silver Spring, Maryland, 2004

Extracted: Tue Aug 3 2010

| Cc | onfi | der | nce | Lin | nit | ş |
|----|------|-----|-----|-----|-----|---|
|    |      |     |     |     |     |   |

| asonal | ity | Re | lated |  |
|--------|-----|----|-------|--|
|--------|-----|----|-------|--|

| Jonanty | rioraro |
|---------|---------|
|         |         |

| asu | ranty | Relate |
|-----|-------|--------|
|     |       |        |

| sonancy                        | Relateu |
|--------------------------------|---------|
| Constant and the second second |         |

| easonality | Relate |
|------------|--------|
|            |        |

| Seaso | namy | R |
|-------|------|---|
|       |      |   |

| onality | Related Info |
|---------|--------------|
|---------|--------------|

| asonality | Relat |
|-----------|-------|
|-----------|-------|

| asonality | Relate |
|-----------|--------|
| asunanty  | Relate |

| Seasona | lity | R |
|---------|------|---|
|---------|------|---|

| easonality | Relater |
|------------|---------|

|        | A CONTRACTOR OF A CONTRACTOR A CONT |
|--------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| nality | Related                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |

GIS data Maps

Docs

Return to State Map

| ARI*<br>(years) | 5 min | <u>10</u><br>min | <u>15</u><br>min | <u>30</u><br>min | <u>60</u><br>min | <u>120</u><br>min | <u>3 hr</u> | <u>6 hr</u> | <u>12 hr</u> | <u>24 hr</u> | <u>48 hr</u> | 4 day | 7 day | <u>10</u><br>day | <u>20</u><br>day | <u>30</u><br>day | 45<br>day | 60<br>day |
|-----------------|-------|------------------|------------------|------------------|------------------|-------------------|-------------|-------------|--------------|--------------|--------------|-------|-------|------------------|------------------|------------------|-----------|-----------|
| 1               | 3.90  | 3.11             | 2.59             | 1.78             | 1.11             | 0.66              | 0.47        | 0.29        | 0.18         | 0.11         | 0.06         | 0.04  | 0.03  | 0.02             | 0.01             | 0.01             | 0.01      | 0.01      |
| 2               | 4.60  | 3.67             | 3.08             | 2.13             | 1.33             | 0.79              | 0.56        | 0.34        | 0.21         | 0.13         | 0.08         | 0.04  | 0.03  | 0.02             | 0.02             | 0.01             | 0.01      | 0.01      |
| 5               | 5.41  | 4.33             | 3.65             | 2.59             | 1.66             | 0.98              | 0.70        | 0.42        | 0.25         | 0.16         | 0.09         | 0.05  | 0.04  | 0.03             | 0.02             | 0.02             | 0.01      | 0.01      |
| 10              | 6.08  | 4.87             | 4.10             | 2.97             | 1.94             | 1.14              | 0.81        | 0.49        | 0.29         | 0.18         | 0.11         | 0.06  | 0.04  | 0.03             | 0.02             | 0.02             | 0.01      | 0.01      |
| 25              | 7.01  | 5.59             | 4.72             | 3.50             | 2.33             | 1.38              | 0.98        | 0.58        | 0.35         | 0.21         | 0.13         | 0.07  | 0.05  | 0.04             | 0.02             | 0.02             | 0.02      | 0.01      |
| 50              | 7.75  | 6.17             | 5.21             | 3.92             | 2.66             | 1.58              | 1.12        | 0.66        | 0.39         | 0.24         | 0.14         | 80.0  | 0.05  | 0.04             | 0.03             | 0.02             | 0.02      | 0.02      |
| 100             | 8.52  | 6.77             | 5.70             | 4.37             | 3.01             | 1.81              | 1.27        | 0.75        | 0.44         | 0.26         | 0.16         | 0.09  | 0.06  | 0.05             | 0.03             | 0.02             | 0.02      | 0.02      |
| 200             | 9.31  | 7.39             | 6:21             | 4.83             | 3.39             | 2.05              | 1.43        | 0.84        | 0.50         | 0.29         | 0.17         | 0.10  | 0.07  | 0.05             | 0.03             | 0.02             | 0.02      | 0.02      |
| 500             | 10.40 | 8.23             | 6.90             | 5.49             | 3.94             | 2.41              | 1.68        | 0.98        | 0.57         | 0.33         | 0.20         | 0.11  | 0.07  | 0.05             | 0.03             | 0.03             | 0.02      | 0.02      |
| 1000            | 11.29 | 8.89             | 7.44             | 6.03             | 4.40             | 2.71              | 1.88        | 1.09        | 0.63         | 0.36         | 0.22         | 0.12  | 80.0  | 0.06             | 0.04             | 0.03             | 0.02      | 0.02      |

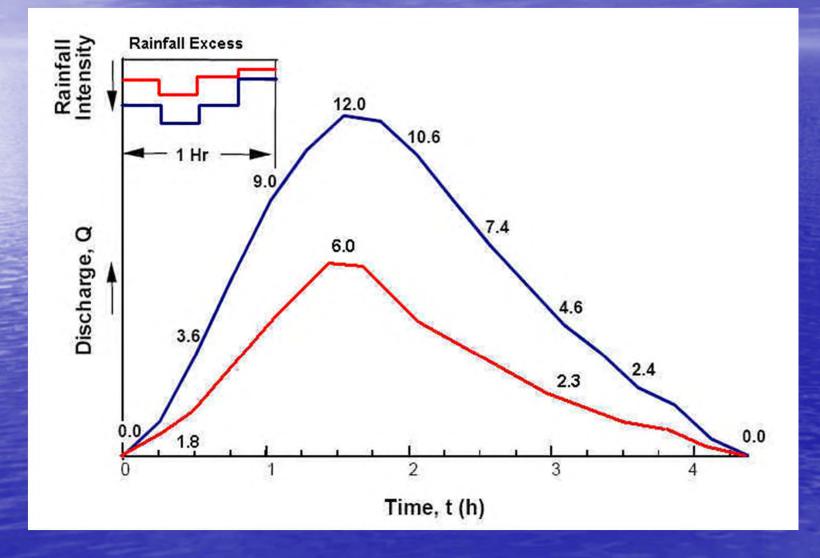
Please refer to NORA Rtlas 14 Document for more information. NOTE: Formatting forces estimates near zero to appear as zero.

|                  |          |           |           |           |           | •          |         |         |          |          |          | e inte:<br>(in/hr) |          |           |           |           |           |           |
|------------------|----------|-----------|-----------|-----------|-----------|------------|---------|---------|----------|----------|----------|--------------------|----------|-----------|-----------|-----------|-----------|-----------|
| ARI**<br>(years) | 5<br>min | 10<br>min | 15<br>min | 30<br>min | 60<br>min | 120<br>min | 3<br>hr | 6<br>hr | 12<br>hr | 24<br>hr | 48<br>hr | 4<br>day           | 7<br>day | 10<br>day | 20<br>day | 30<br>day | 45<br>day | 60<br>day |
| 1                | 4.32     | 3.44      | 2.87      | 1.97      | 1.23      | 0.72       | 0.52    | 0.32    | 0.19     | 0.12     | 0.07     | 0.04               | 0.03     | 0.02      | 0.02      | 0.01      | 0.01      | 0.01      |
| 2                | 5.09     | 4.07      | 3.41      | 2.35      | 1.48      | 0.87       | 0.62    | 0.38    | 0.23     | 0.14     | 80.0     | 0.05               | 0.03     | 0.03      | 0.02      | 0.01      | 0.01      | 0.01      |
| -                |          |           | 1 million |           | 1         | 1          |         | 1.1.1.  |          |          |          |                    |          |           |           |           |           |           |

# **Rational Method**

Q = CIA
"I" will now come from PFDS

# NRCS Unit Hydrograph


Natural Resources Conservation Service (NRCS), formerly Soil Conservation Service (SCS) developed the method in 1972.
Developed by analyzing a large number of natural unit hydrographs from a broad cross-section of geographic locations and hydrologic regions.

# NRCS Unit Hydrograph Basic Steps

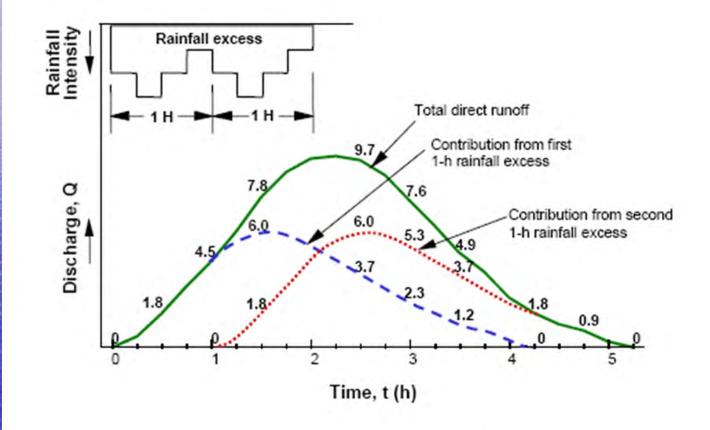
 Determine unit hydrograph characteristics Determine storm criteria (Rainfall Depth) combined with Storm Distribution) Determine runoff factor (CN) Compute rainfall excess Combine rainfall excess data with unit hydrograph to determine a runoff hydrograph (Convolution)

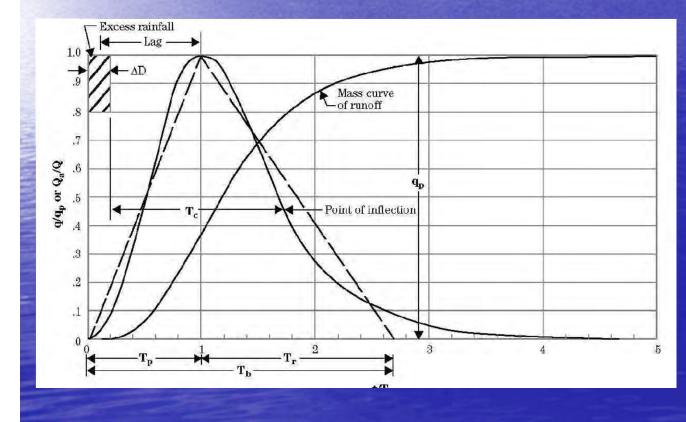
# Hydrograph Principals

# Hydrograph Proportionality



# Combining Hydrographs





Figure 6.4. Runoff hydrograph for two successive 1-hour storms

# Unit Hydrograph Characteristics

### Unit Hydrograph

A hydrograph of a direct runoff resulting from one unit (1 in.) of effective rainfall generated uniformly over the watershed area during a specified period of time or duration

### NRCS Dimensionless Unit Hydrograph Tin (V) 0

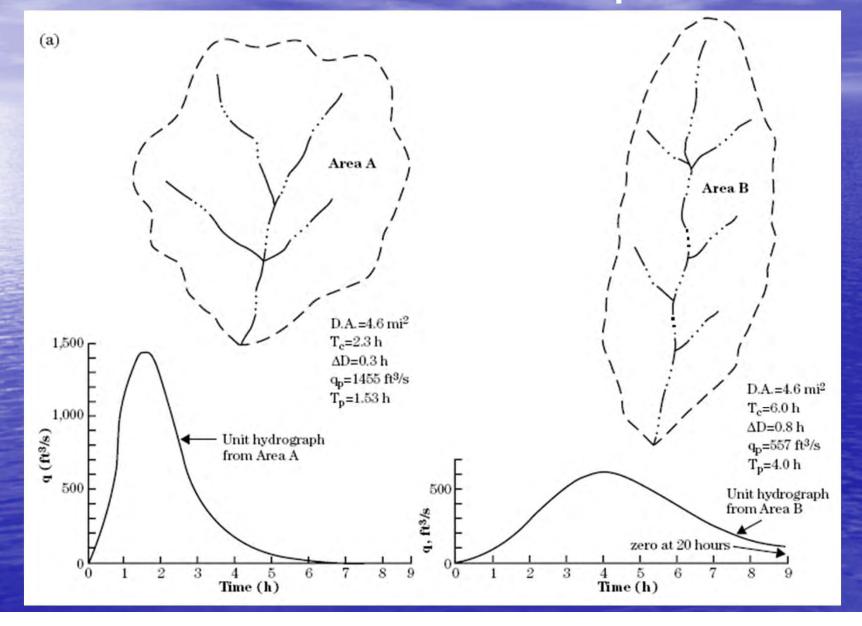


| Time ratios<br>(t/T <sub>p</sub> ) | Dîscharge ratios<br>(q/q <sub>p</sub> ) | Mass curve ratios<br>(Q <sub>a</sub> /Q) |
|------------------------------------|-----------------------------------------|------------------------------------------|
| 0                                  | .000                                    | .000                                     |
| .1                                 | .030                                    | .001                                     |
| .2                                 | .100                                    | .006                                     |
| .3                                 | .190                                    | .017                                     |
| .4                                 | .310                                    | .035                                     |
| .5                                 | .470                                    | .065                                     |
| .6                                 | .660                                    | .107                                     |
| .7                                 | .820                                    | .163                                     |
| .8                                 | .930                                    | .228                                     |
| .9                                 | .990                                    | .300                                     |
| 1.0                                | 1.000                                   | .375                                     |
| 1.1                                | .990                                    | .450                                     |
| 1.2                                | .930                                    | .522                                     |
| 1.3                                | .860                                    | .589                                     |
| 1.4                                | .780                                    | .650                                     |
| 1.5                                | .680                                    | .705                                     |
| 1.6                                | .560                                    | .751                                     |
| 1.7                                | .460                                    | .790                                     |
| 1.8                                | .390                                    | .822                                     |
| 1.9                                | .330                                    | .849                                     |
| 2.0                                | .280                                    | .871                                     |
| 2.2                                | .207                                    | .908                                     |
| 2.4                                | .147                                    | .934                                     |
| 2.6                                | .107                                    | .953                                     |
| 2.8                                | .077                                    | .967                                     |
| 3.0                                | .055                                    | .977                                     |
| 3.2                                | .040                                    | .984                                     |
| 3.4                                | .029                                    | .989                                     |
| 3.6                                | .021                                    | .993                                     |
| 3.8                                | .015                                    | .995                                     |
| 4.0                                | .011                                    | .997                                     |
| 4.5                                | .005                                    | .999                                     |
| 5.0                                | .000                                    | 1.000                                    |

# Unit Hydrograph Shape

 The <u>Unit</u> hydrograph shape for a watershed depends on peak discharge (q<sub>p</sub>) and time to peak (Tp)

 $q_{p} = \frac{K_{p} \times A \times Q}{Tp}$ 

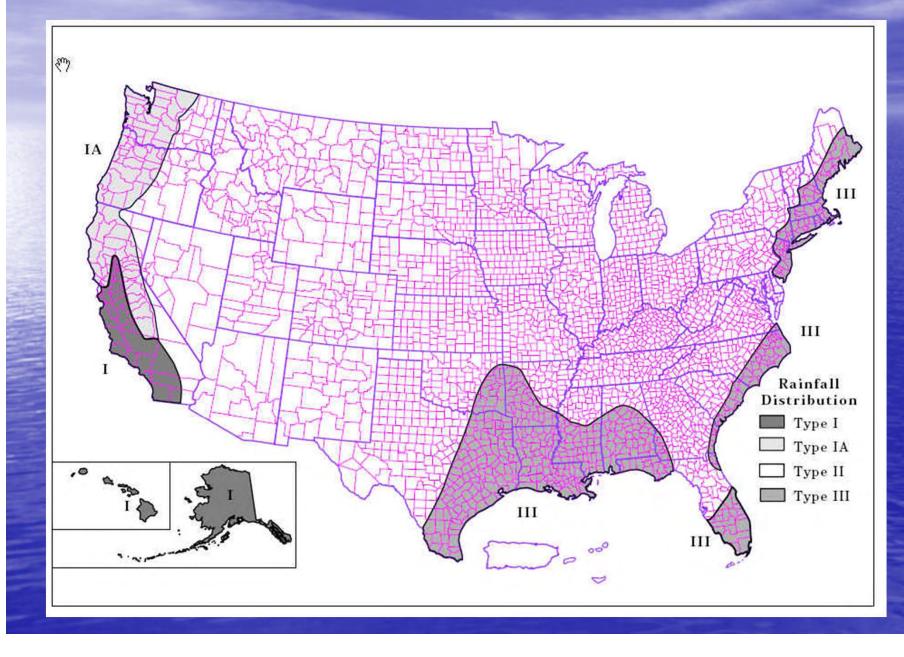

Peak Discharge of the Unit Hydrograph Q is in Inches

Tp and q<sub>p</sub> both depend largely on basin
 Lag (L) and duration of <u>unit excess</u> rainfall

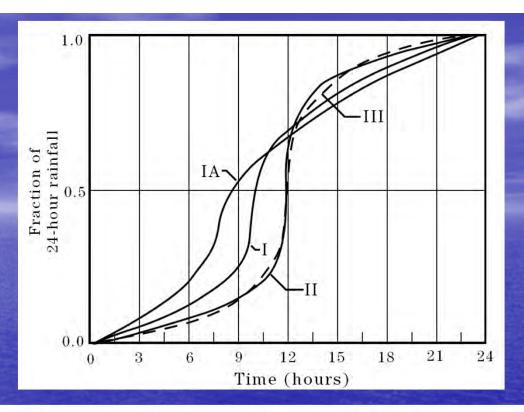
# Unit Hydrograph for the Watershed

- Basin Lag : L = .6 Tc
  Duration of <u>unit</u> excess rainfall : ΔD = .133 Tc
  Resulting Unit hydrograph is a ΔD – hour unit hydrograph
  AKA: a hydrograph that results from one
  - unit (1 inch) of <u>excess</u> precipitation over a period of  $\Delta D$

# Watershed Shape




# **Storm Characteristics**


### NRCS Storm Criteria

Acquire 24 hour storm depths for applicable return period from Precipitation Frequency Data Server
Apply the Type II distribution to develop a rainfall hyetograph (distribution of rainfall over time)

# NRCS Rainfall Distributions



# NRCS Type II Distribution



| Time, t (h) | Fraction of 24-h<br>Rainfall | Time, t (h) | Fraction of 24-h<br>Rainfall |
|-------------|------------------------------|-------------|------------------------------|
| 0           | 0                            | 11          | 0.235                        |
| 2           | 0.022                        | 11.5        | 0.283                        |
| 4           | 0.048                        | 11.75       | 0.393                        |
| 6           | 0.080                        | 12          | 0.663                        |
| 7           | 0.098                        | 12.5        | 0.735                        |
| 8           | 0.120                        | 13          | 0.772                        |
| 8.5         | 0.133                        | 13.5        | 0.799                        |
| 9           | 0.147                        | 14          | 0.820                        |
| 9.5         | 0.163                        | 16          | 0.880                        |
| 9.75        | 0.172                        | 20          | 0.952                        |
| 10          | 0.181                        | 24          | 1                            |
| 10.5        | 0.204                        |             |                              |

# Runoff Factor NRCS Curve Number (CN)

### Curve Number

- An index relating to the potential of the watershed to produce runoff.
- Dependant on the hydrologic soil group (soil), the land use and treatment class (cover) and the antecedent moisture conditions.
- Higher CN values = higher runoff potential

# Curve Numbers

| * Table 405-2 NRCS Curve Numbers For Urban Areas                  |    |             |    |    |  |  |  |
|-------------------------------------------------------------------|----|-------------|----|----|--|--|--|
| Cover Type                                                        |    | For<br>Soil |    |    |  |  |  |
|                                                                   | A  | В           | С  | D  |  |  |  |
| Fully developed urban areas <sup>a</sup> (vegetation established) |    |             | _  |    |  |  |  |
| Lawns, open spaces, parks, golf courses, cemeteries, etc.         | -  |             |    |    |  |  |  |
| Good condition; grass cover on 75% or more of the area            | 39 | 61          | 74 | 80 |  |  |  |
| Fair condition; grass cover on 50% to 75% of the area             | 49 | 69          | 79 | 84 |  |  |  |
| Poor condition; grass cover on 50% or less of the area            | 68 | 79          | 86 | 89 |  |  |  |
| Paved parking lots, roofs, driveways, etc. (excl. right-of- way)  | 98 | 98          | 98 | 98 |  |  |  |
| Streets and roads                                                 |    |             |    |    |  |  |  |
| Paved with curbs and storm sewers (excl. right-of-way)            | 98 | 98          | 98 | 98 |  |  |  |
| Gravel (incl. right-of-way)                                       | 76 | 85          | 89 | 91 |  |  |  |
| Dirt (incl. right-of-way)                                         | 72 | 82          | 87 | 89 |  |  |  |
| Paved with open ditches (incl. right-of-way)                      | 83 | 89          | 92 | 93 |  |  |  |

# Hydrologic Soil Groups

Runoff Potentia

Group A: deep sand, deep loess; aggregated silts
Group B: shallow loess; sandy loam
Group C: clay loams; shallow sandy loam; soils low in organic content; soils usually high in clay

 Group D: soils that swell significantly when wet; heavy plastic clays; certain saline soils

# HSG - NRCS Web Soil Survey

http://websoilsurvey.nrcs.usda.gov/app/HomePage.htm



#### You are here: Web Soil Survey Home

Search

| Enter Keywords | _ | Go |
|----------------|---|----|
| All NRCS Sites | • |    |

The simple yet powerful way to access and use soil data.



#### Browse by Subject

#### Soils Home

- National Cooperative Soil Survey (NCSS)
- Archived Soil Surveys
- ▶ Status Maps
- Official Soil Series Descriptions (OSD)
- Soil Series Extent Mapping Tool
- Soil Data Mart
- Geospatial Data Gateway
- ▶ eFOTG
- National Soil Characterization Data
- Soil Geochemistry Spatial Database
- ▶ Soil Quality
- Soil Geography

### Welcome to Web Soil Survey (WSS)



Web Soil Survey (WSS) provides soil data and information produced by the National Cooperative Soil Survey. It is operated by the USDA Natural Resources Conservation Service (NRCS) and provides access to the largest natural resource information system in the world. NRCS has soil maps and data available online for more than 95

percent of the nation's counties and anticipates having 100 percent in the near future. The site is updated and maintained online as the single authoritative source of soil survey information.

#### **Three Basic Steps**

1



Use the Area of Interest tab to define your area of interest.

#### I Want To ...

- Start Web Soil Survey (WSS)
- Know the requirements for running Web Soil Survey
- Know whether Web Soil Survey works in my web browser
- Know the Web Soil Survey hours of operation
- Find what areas of the U.S. have soil data

#### Announcements/Events

 Web Soil Survey Release History

#### I Want Help With ...

- How to use Web Soil Survey
- How to use Web Soil Survey Online Help
- Known Problems and Workarounds

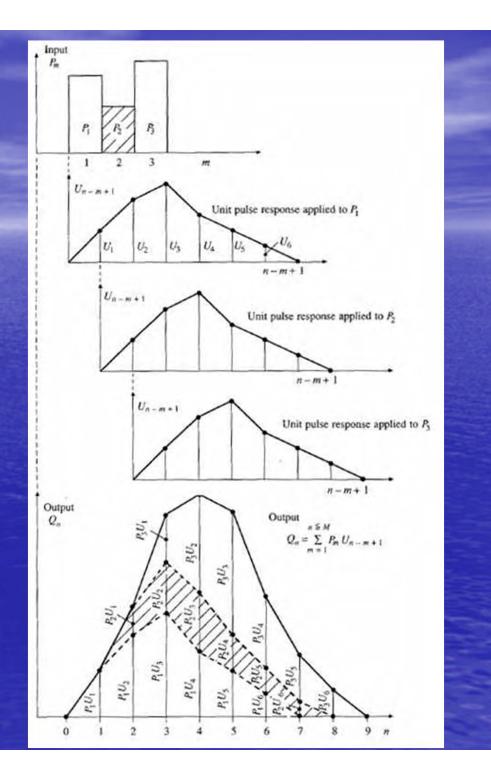
#### 

# **Rainfall Excess**

# Rainfall Excess

 $Q = \frac{(P - I_a)^2}{P - I_a + S}$ 

Accumulated **Direct Runoff** (Inches) Ia & S can be calculated from CN


Rainfall excess is divided into small pulses with a duration of  $\Delta D$  for each pulse

• These rainfall pulses are combined with the unit hydrograph to determine a direct runoff hydrograph

### Convolution

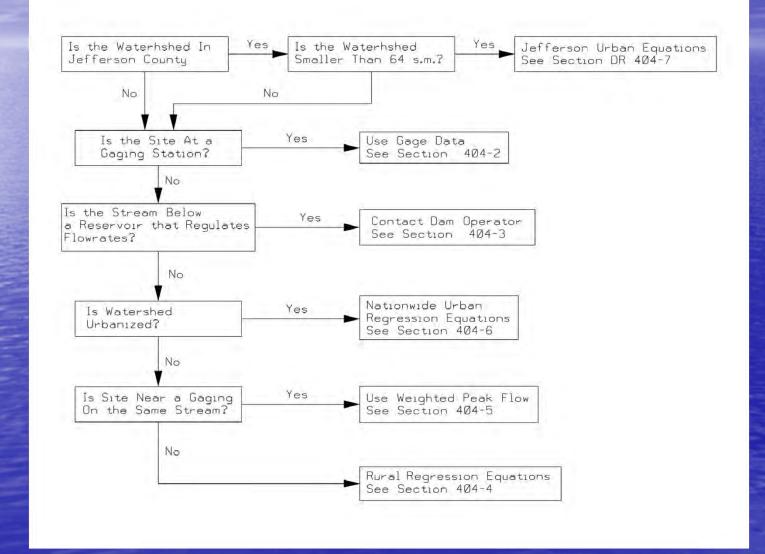
Combining the incremental precipitation excess pulses from the design storm with the unit hydrograph to produce the direct runoff hydrograph

# Convolution of Unit Hydrographs



# USGS Regional Method (Peak Flow)

### **USGS Regional Method**


- Peak flow estimating technique based on analysis of stream gage data
   USGS has been collecting data in Kentucky
  - since 1907

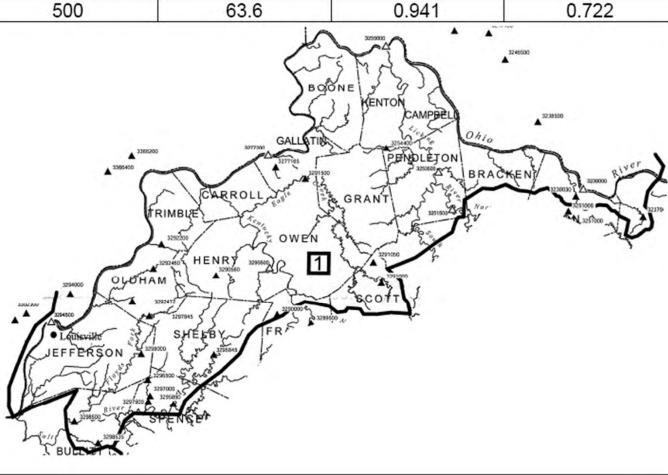
 Flow rates obtained from a combination of stream gage data and regional regression equations

### Applicable USGS Reports

- Water Resources Investigations Report 03-4180 (2003) "Estimating the Magnitude of Peak Flows for Streams in Kentucky for Selected Recurrence Intervals"
- Water-Supply Paper 2207 (1983) titled "Flood Characteristics of Urban Watersheds in the United States"
- Water Resources Investigations Report 97-4219 (1997) titled, "Estimation of Peak-Discharge Frequency of Urban Streams in Jefferson County Kentucky."

### **Regional Method Review**




### Statewide Rural Regression Equations

$$Q_R = K \times A^b \times S^c$$

Q in cfs, A = area in acres, S = Main Channel Slope in ft/mile
Constants K, b, c listed in tables in Drainage Manual

| Daturn Dariad            | V    | L     |       |
|--------------------------|------|-------|-------|
| Return Period<br>(years) | K    | D     | c     |
| 2                        | 312  | 0.673 | 0     |
| 5                        | 493  | 0.651 | 0     |
| 10                       | 91.5 | 0.843 | 0.451 |
| 25                       | 81.2 | 0.872 | 0.535 |
| 50                       | 75.8 | 0.890 | 0.587 |
| 100                      | 71.4 | 0.907 | 0.632 |
| 200                      | 67.8 | 0.922 | 0.673 |
| 500                      | 63.6 | 0.941 | 0.722 |

Regression Equation Constants for the North Region



### Site Located At A Gage

- At a gage drainage area of the site must be within +/- 3 percent of the drainage area at the USGS stream gage
- Flow is computed as a weighted average between the gage flow and the flow resulting from the appropriate regression equation
- These weighted flows are listed in Report 03-4180 for each gage

### Site Located Near a Gage

Near A Gage – drainage area of the site ranges from 50 to 200 percent of the drainage area of a nearby USGS gage
Flow determined by a weighting technique using the gage data and the regional equation. (Not same technique used for "At a gage")

## Site Located On A Regulated Stream

 Regulated - drainage basin above the site contains more than 4.5 million ft<sup>3</sup> of usable reservoir storage per mi<sup>2</sup> drainage area

Houston....we have a problem
Contact Dam Operator

### **Urbanized Basin**

 More than 15 percent of the drainagebasin area above the site is covered by some type of commercial, industrial, or residential development
 Nationwide Urban Regression Equations

#### 7 Parameter Urban Regression Equations

 $UQR = K \times (A^{M}) \times (S^{N}) \times ((Rl2 + 3)^{O} \times (ST + 8)^{P} \times (13 - BDF)^{Q} \times (IA^{R}) \times (RQ^{S})$ 

- ST Basin Storage, percentage of the drainage basin occupied by lakes, reservoirs, swamps and wetlands
- **BDF Basin Development Factor**
- IA Percentage of the drainage basin occupied by impervious surfaces
- RQ Rural regression equation peak flow
- RI2 Rainfall depth, in inches, for the two-hour, two-year occurrence

K, M, N, O, P, Q, R, S are constants

### **Basin Development Factor**

- Divide Basin Into Thirds
- Each third is evaluated and assigned a code for:
  - Channel Improvements
  - Channel Linings
  - Storm Drains, Storm Sewers
  - Curb & Gutter Streets

 Ranges from 0 (no urbanization) -12 (highly urbanized)

### Jefferson County Regression Equations

| Table                         | e 404-15 Jefferson County Regression Equations                                     |
|-------------------------------|------------------------------------------------------------------------------------|
| Return<br>Interval<br>(Years) | Jefferson County Urban Peak-discharge estimating<br>equations                      |
| 2                             | UQ2 = 442(A <sup>0.635</sup> )(SL <sup>0.128</sup> )(13 – BDF) <sup>-0.337</sup>   |
| 5                             | UQ5 = 517(A <sup>0.589</sup> )(SL <sup>0.208</sup> )(13 – BDF) <sup>-0.268</sup>   |
| 10                            | UQ10 = 561(A <sup>0.574</sup> )(SL <sup>0.243</sup> )(13 – BDF) <sup>-0.235</sup>  |
| 25                            | UQ25 = 647(A <sup>0.556</sup> )(SL <sup>0.276</sup> )(13 – BDF) <sup>-0.209</sup>  |
| 50                            | UQ50 = 703(A <sup>0.547</sup> )(SL <sup>0.295</sup> )(13 – BDF) <sup>-0.189</sup>  |
| 100                           | UQ100 = 780(A <sup>0.538</sup> )(SL <sup>0.310</sup> )(13 – BDF) <sup>-0.181</sup> |

# DR 1101 Temporary Drainage Design

- All drainage design is based on acceptable levels of risk
- Design of temporary structures highlights this concept

### Temporary Drainage Design / Risk Assessment

#### Key Concept Examples

- A diversion that is built for a construction project that will last for only 3 months has a much smaller risk of seeing a large storm than one where the diversion will remain in place for 1 year.
- Diversions in highly populated areas with houses in close proximity to the structure should be designed to higher levels than one where no dwellings are located.
- There is less acceptance to a temporary diversion flooding on a highly traveled route with no close detour as opposed to a route with low traffic or a close detour

### Temporary Drainage Design

As with any stream crossing, temporary structures should be design to accommodate larger floods than the "design" flood. This accomplishes two primary goals
Reduce damages from larger floods
Avoid total washout of diversion

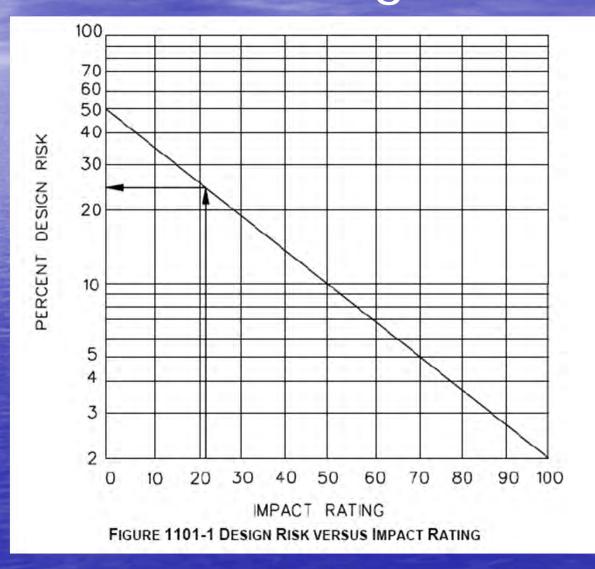
 This is usually accomplished by ensuring that anything over the design storm overtops the structure.

### Two Primary Considerations in Determining overall Risk

- Frequency that a undesired event will happen
- Impact of the event

### **General Procedure**

Compute the following:


Total Impact Rating Value
Percent Design Risk
Design Frequency

Size so that the next highest frequency storm overtops

# Impact Rating Value

|                                                              | Tabl                                                                          | e 1101-1 Ratin                                                                                                  | g Selection            |                      |            |  |
|--------------------------------------------------------------|-------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|------------------------|----------------------|------------|--|
|                                                              | Factor                                                                        | Impact Rating Values (IRV)                                                                                      |                        |                      |            |  |
| 1                                                            | Urban                                                                         | ADT                                                                                                             | 0-400                  | 401-1500             | > 1500     |  |
| Average Daily                                                | Orban                                                                         | IRV                                                                                                             | 1                      | 2                    | 3          |  |
| Traffic (ADT)<br>(number of                                  | Suburban                                                                      | ADT                                                                                                             | 0-750                  | 751-1500             | > 1500     |  |
| vehicles per                                                 | Suburban                                                                      | IRV                                                                                                             | 1                      | 2                    | 3          |  |
| day)                                                         | Rural                                                                         | ADT                                                                                                             | 0-1500                 | 1501-3000            | > 3000     |  |
| 1 /1 12                                                      |                                                                               | IRV                                                                                                             | 1                      | 2                    | 3          |  |
| Loss of Life<br>(cross-checked<br>with roadway<br>ADT)       | $Yes \rightarrow IRV$                                                         |                                                                                                                 | 15                     | 30                   | 45         |  |
|                                                              | $No \rightarrow IRV$                                                          |                                                                                                                 | 1                      | 2                    | 3          |  |
| Property<br>damage<br>(cross-checked<br>with<br>roadway ADT) | IRV for reside<br>commercial, in<br>areas, waste,<br>and water sup<br>systems | ndustrial<br>and storm                                                                                          | 10                     | 20                   | 30         |  |
|                                                              | IRV for cropla<br>parking and re<br>areas                                     |                                                                                                                 | 5                      | 10                   | 15         |  |
|                                                              | IRV for all oth<br>(pasture, mea<br>soil, etc.)                               | The second se | 1                      | 2                    | 3          |  |
| Detour Length                                                | Length (mi)                                                                   |                                                                                                                 | < 5                    | 5–9                  | > 9        |  |
| Detour Length                                                | IRV                                                                           |                                                                                                                 | 1                      | 2                    | 3          |  |
| Height above                                                 | eight above Height (ft)                                                       |                                                                                                                 | < 10                   | 10–20                | > 20       |  |
| streambed                                                    | IRV                                                                           |                                                                                                                 | 1                      | 2                    | 3          |  |
| Desines                                                      | Area (mi2)                                                                    |                                                                                                                 | < 1                    | 1–65                 | > 65       |  |
| Drainage Area                                                | IRV                                                                           |                                                                                                                 | 1                      | 2                    | 3          |  |
| Traffic Interruption                                         | ons (see instruc                                                              | ctions)                                                                                                         | IRV for A<br>detour le | DT multiplied Ingth. | by IRV for |  |

## Percent Design Risk



## Design Frequency

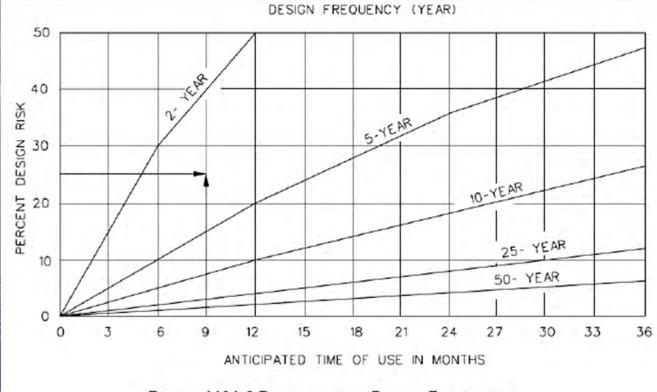



FIGURE 1101-2 RECOMMENDED DESIGN FREQUENCY

Design to overtop for next return interval.

### Software Policy

 Narrowing recommended software down to a short list

Require these to be used?

Phase out software that is not recommended?

# Drainage Folder Structure

### Goals:

1. Make Drainage Folders easier to review

2. Improve summary forms

Improve documentation of key decisions

### Goal 1: Ease of Review

Define consistent organization for content

Set clear content standards

## Goal 1: Ease of Review (cont'd)

#### Drainage Folder organized by "Sections"

| Tab       | ble 302-1, Sequence of Drainage Folder Components |
|-----------|---------------------------------------------------|
| Section   | Description                                       |
| N/A       | Drainage Folder Cover                             |
| N/A       | Table of Contents                                 |
| Section 1 | Drainage Summary                                  |
| Section 2 | Meeting Reports and Correspondence                |
| Section 3 | Hydrology                                         |
| Section 4 | Plan Sheets                                       |
| Section 5 | Bridges and Culverts                              |
| Section 6 | Storm Sewer Systems                               |
| Section 7 | Pavement Inlet Spread Calculations                |
| Section 8 | Channel Calculations                              |
| Section 9 | Other                                             |

### Goal 1: Ease of Review

 Similar "Section" organization concept for Advance Situation Folders

 Coordinate with Structural Design Manual
 Pull information from the Drainage Folder

### Goal 1: Ease of Review

Content standards

- Define specific content required for each Section
- Define output specifications for software reports
  - Limit reports to that which is necessary
  - Avoid massive reports

- Improve Drainage Design Summary Form (TC 61-100)
- Create Storm Sewer Design Summary Form
- Clarify Bridge & Culvert Summary Form (TC 61-504)
- Write Detailed Instructions for Forms

### Drainage Design Summary (TC 61-100)

| Kentucky Transportation Cabinet<br>Division of Highway Design 4-06 | DRAINAGE DESIGN SUMMARY         |                         |                                  | IARY          | т                       | 61-100      | 0         | 1 of 2 |  |  |
|--------------------------------------------------------------------|---------------------------------|-------------------------|----------------------------------|---------------|-------------------------|-------------|-----------|--------|--|--|
| County : Scott                                                     |                                 | Rout                    | e : KY 356                       |               |                         | Item #      | : 7-110   | 02.0   |  |  |
| UPN : FD52 105 0356 002-0                                          | JPN : FD52 105 0356 002-003 FPN |                         |                                  | 59            |                         | Station     | n: 18+2   | 15     |  |  |
|                                                                    | E                               | XISTI                   | NG CONDITIO                      | ONS           |                         |             |           |        |  |  |
| Stream : NO NAME                                                   | 0                               | Drainage Area: 0.69 Ac. |                                  |               | Slop                    | oe (ft/ft): |           |        |  |  |
| OHW Elev. :                                                        | Drift :                         | Drift : Bed Material :  |                                  |               |                         | D50         | (mm) :    |        |  |  |
| Abrasion Level :                                                   | pH : Medium                     | n. —                    | Resistivity :                    | - 23          | Da                      | te Take     | n:        |        |  |  |
| Return Interval (years)                                            | 2                               | 5                       | 10                               | 25            |                         | 50          | 100       | 500    |  |  |
| Discharge (cfs)                                                    |                                 |                         | 11.                              |               | T                       |             | · · · · · |        |  |  |
| Flow Depth or Tailwater (ft)                                       | 1                               |                         | 1111                             | S             |                         | -           | 1         | 11     |  |  |
| Velocity (ft/s)                                                    |                                 |                         |                                  |               |                         |             |           |        |  |  |
|                                                                    | PR                              | OPO                     | SED STRUCT                       | URE           |                         |             |           |        |  |  |
| Type : 18" Culvert Pipe                                            |                                 |                         | Geometry, Skew : 45 If @ 0" Skew |               |                         |             |           |        |  |  |
| Lt. Abut. / Inlet : S&F Wingwa                                     | Ú.                              |                         | Rt. Abut./ Outl                  | et : S&F V    | /ingv                   | vall        |           |        |  |  |
| Coating :                                                          | Cover Heig                      | Cover Height : ft       |                                  |               | Low Road Elev. : 955.53 |             |           |        |  |  |
| Net Opening : sf                                                   | Low Beam                        | Elev                    | £                                | Grate Elev. : |                         |             |           |        |  |  |
| Slope : 0.0167 ft/ft                                               | Inlet Elev.                     | 951                     | 75                               | Outle         | Outlet Elev.: 951.00    |             |           | 2      |  |  |
| WSEL with Structure                                                |                                 |                         | 11.                              | 952.44        | T                       |             | 952.52    |        |  |  |
| WSEL without Structure                                             |                                 |                         |                                  |               |                         | =           |           | 11     |  |  |
| Velocity with Structure (ft/s)                                     |                                 | _                       |                                  | 5.1           |                         |             | 5.6       | 1      |  |  |
| Q over Road                                                        | 1.1                             |                         | 1                                | 1.1           |                         |             |           | 11     |  |  |
|                                                                    | E                               | XIST                    | NG STRUCT                        | JRE           | -                       |             | -         |        |  |  |
| Type : 15" RCP Culvert Pipe                                        |                                 | Geo                     | eometry, Skew :                  |               |                         |             |           |        |  |  |
| Lt. Abut. / Inlet :                                                |                                 | 11                      | Rt. Abut./ Out                   | et :          |                         |             |           |        |  |  |
| Condition :                                                        | -                               |                         | Low Road Elev. :                 |               |                         |             |           |        |  |  |
| Net Opening : sf                                                   | Low Beam                        | Elev                    | 1                                | Grate         | e El                    | ev.;        | -         |        |  |  |
| Slope :                                                            | Inlet Elev.                     | 954                     | 22                               | Outle         | et E                    | lev. 9      | 52.05     |        |  |  |
| WSEL with Structure                                                |                                 |                         |                                  |               |                         | -           | 1         | 1      |  |  |
| WSEL without Structure                                             |                                 | 1.000                   |                                  | 2015          |                         |             | 1.1       |        |  |  |
| Velocity with Structure                                            |                                 |                         | 1.                               | -             |                         | -           |           | 11     |  |  |
| Q over Road                                                        |                                 |                         |                                  |               |                         |             |           |        |  |  |

| Kentucky Transportal<br>Division of Design |               | DRA        | AINAGE I | DESIGN        | SUMMARY       | TC 61-100  | 2 of 2      |
|--------------------------------------------|---------------|------------|----------|---------------|---------------|------------|-------------|
|                                            |               | R          | EMARKS   | s and / c     | or CONTROLS   |            |             |
|                                            |               |            |          |               |               |            |             |
|                                            |               |            | _        |               |               |            |             |
|                                            |               |            | RECORD   | HIGHN         | ATER DATA     | 1.         |             |
| Source                                     | 1             |            |          | 2             |               | 3.         |             |
| Elevation                                  | -             |            |          |               |               |            |             |
| Date                                       |               |            | _        |               |               |            |             |
| Location                                   | _             |            |          |               |               | _          |             |
|                                            |               |            |          |               | NNEL LINING   |            |             |
| Location                                   | Class Thickne |            | ess (    | Depth Protect | Length        | Quantity   |             |
| Upstream                                   | F             |            | FT       | FT            | LF            |            |             |
| Downstream                                 | 2             |            | 1.25 F   | T             | 1.0 FT        | LF         | 4.5 TNS     |
|                                            |               |            | PROP     | OSED D        | IVERSION      |            |             |
| Flooding                                   | Retu          | rn Interva | l (yrs)  | Di            | scharge (CFS) | E          | levation    |
| Design Storm                               | _             |            | -        |               |               |            |             |
| Overtop Storm                              |               |            |          |               |               |            |             |
| Recommended                                | Size and      | Type of C  | pening(s | ):            |               | -          |             |
| 1                                          | PROPOSI       | ED BOX     | CULVER   | RT OR S       | SPECIAL WING  | WALL ANGLE | s           |
| Normal End                                 | EY EN         | Skewed     | End C    | YEN           |               | 1          |             |
| Location                                   | 1             | 2          | 3        | 4             |               |            | -           |
| 30 Degree                                  | T             | Г          | - Tî     | - 17          | Inlet         | Quiter     | /           |
| Skewed                                     |               |            | 1222     | 1.1.1.1       | 2             |            |             |
| Special                                    |               |            | 1.0      | 1.1           | NORM          | AL ENDS 3  | SKEWED ENDS |
|                                            |               | OTH        | ER SITE  | SPECIF        | IC INFORMATIC | N          |             |
|                                            |               |            | D        | RY STRU       | CTURE         |            |             |
|                                            |               |            |          |               |               |            |             |
|                                            |               |            |          |               |               |            |             |
|                                            |               |            |          |               |               |            |             |

Questionnaire Comments

Add Latitude / Longitude
Add section for bridge scour data

Ideas/comments still being accepted

#### Instructions

#### Develop Storm Sewer Summary Form

| Kentucky Transportation Cabinet<br>Division of Highway Design 8-10 |          |             | ORM SE    | WER SYST   | TC 61        |          |            |          |
|--------------------------------------------------------------------|----------|-------------|-----------|------------|--------------|----------|------------|----------|
|                                                                    | FAYETT   | E           | Rou       | ite :      | US 68        | -        | Item # :   | 7-318.01 |
| UPN : FD                                                           | 04 057 0 | 068 004-011 | 0         | FPN :      | ;            | OSTPR    | 0268 017   |          |
| Outfall Station:                                                   |          |             | 1         | Outfall Of | fset:        |          |            | ft i Li  |
| System Sta. to Sta.                                                |          |             | 571+50    |            | to           | 13       | 580+00     |          |
| 1                                                                  |          | E           | XISTING   | CONDITI    | ONS          |          |            |          |
| Downstream Receivi                                                 | ng Stru  | cture :     | Pipe Inle | et Tai     | lwater Cont  | rol :    | Pipe Heady | vater    |
| Receiving Structure                                                | Area :   | 30          | Ac        | Wtd "C"    | 0.33 Tc:     | 7.7 mir  | Slope :    | 0.50%    |
| Return Interval (yea                                               | irs)     | 2           | 5         | 10         | 25           | 50       | 100        | 500      |
| Discharge (cfs)                                                    |          | 5           | 10        | 15         | 20           | 25       | 30         | 35       |
| Flow Depth ; Tailwate                                              | er (ft)  | 1.10        | 1.20      | 1.36       | 1.50         | 1.68     | 2.00       | 2.50     |
| Existing Culvert or Cha                                            | annel a  | Outlet      |           |            |              |          |            |          |
| Channel Trapezoidal                                                | Side     | Slopes Lt   | 4.5 1.1   | Rt 4.5     | 1 Bottom     | Width: 4 | ft Slop    | e: 0.50  |
| Culvert Outlet Size                                                | 30       | In Dia      |           | N/A N/A    | Material     | RCP Out  | let Elev   |          |
| Outlet Conditions                                                  | Area :   | 20          | Ao        | Wtd "C"    | 0.27 Tc:     | 6 mir    | Slope :    | 0.50%    |
| Return Interval (yea                                               | irs)     | 2           | 5         | 10         | 25           | 50       | 100        | 500      |
| Discharge (cfs)                                                    |          | 2           | 4         | 6          | 8            | 10       | 12         | 14       |
| Flow Depth (ft)                                                    |          | 1.10        | 1.20      | 1.36       | 1.50         | 1.68     | 2.00       | 2.50     |
| Velocity (ft/s)                                                    |          | 2.50        | 2 60      | 271        | 2.85         | 3.00     | 3.04       | 3.50     |
|                                                                    |          | PI          | ROPOSE    | D CONDIT   | IONS         |          |            |          |
| Downstream Receivi                                                 | ng Stru  | cture :     | Pipe Inle | et Tai     | ilwater Cont | rol :    | Pipe Heady | vater    |
| Receiving Structure                                                | Area :   | 30          | Ac        | Wtd "C":   | 0.33 Tc:     | 7.7 mir  | Slope :    | 0.50%    |
| Return Interval (yea                                               | irs)     | 2           | 5         | 10         | 25           | 50       | 100        | 500      |
| Discharge (cfs)                                                    |          | 5           | 10        | 15         | 20           | 25       | -30        | 35       |
| Flow Depth ; Tailwate                                              | er (ft)  | 1.10        | 1.20      | 1.36       | 1.50         | 1.68     | 2.00       | 2.50     |
| Proposed Struc                                                     | ture     |             |           |            |              |          |            |          |
| Stm Swr Outfall Size :                                             | 30       | In Dia      | ;         | N/A N/A    | Material :   | RCP Out  | let Elev.  |          |
| Outlet Conditions                                                  | Area :   | 20          | Ac        | Wtd "C"    | 0.27 Tc:     | 6 mir    | Slope :    | 0.50%    |
| Return Interval (yea                                               | irs)     | 2           | 5         | 10         | 25           | 50       | 100        | 500      |
| Discharge (cfs)                                                    |          | 2           | 4         | 6          | 8            | 10       | 12         | 14       |
| Flow Depth (ft)                                                    |          | 1.10        | 1.20      | 1.36       | 1.50         | 1.68     | 2.00       | 2.50     |
| Velocity (ft/s)                                                    |          | 2.50        | 2.60      | 2.71       | 2.85         | 3.00     | 3 04       | 3.50     |
|                                                                    | and ve   | rsion)      |           |            |              |          |            |          |
| Analysis Software                                                  | land ve  |             |           |            |              |          |            |          |

- System/outfall location
- Pre- and Postdeveloped conditions
- Downstream conditions and controls
- Summary of results
- Software used (and version #)

- Clarify the Bridge & Culvert Summary Form (TC 61-504)
  - Name has created confusion
  - Considering changing name of form and
  - making minor revisions
  - Detailed instructions

### Goal 3: Improve Documentation

"Drainage Executive Summaries"

 Project-wide
 Individual drainage structures
 Show in remarks column of TC 61-504 for individual drainage structures

 Clearly convey information to reviewers regarding important decision processes

### Results:

Clear Expectations
Consistent Folder Content
Simplify Review
Improve information transfer between various parties who use the Folders

# Water Related Impacts

### **Current Policy**

- Originated in Design Memos 19-90 and 3-91
- "Avoidance Alternatives to Water-Related Impacts" included in DES and Conceptual Design Meeting (AKA PL&G) minutes. Discusses avoidance and may address minimization.
  "Assessment of Water-Related Impacts" included in Final Inspection Report. Includes the "Avoidance Alternatives to Water-Related Impacts". Addresses all three: avoidance, minimization and mitigation.

### The Point

- Avoid impacts
- If you can't avoid, Minimize.
- After you have minimized, mitigate for impacts that you could not avoid
  Became significant in early 1990's when Section 404 permit guidelines where modified

### **Proposed Policy**

- One document that is initiated during the conceptual design phase, and is built upon though final design
- This document will be entitled the "Water Related Impact Summary"
  - First Section completed for each alternate considered
  - Second Section completed for selected alternate
- Expanded to cover more impacts
- More definitive about contents

# Why?

- The time to avoid and minimize is when the project is being designed
- Get designers thinking about avoiding and minimizing water related impacts early in the design process
- Will be used by DEA and Drainage Branch to identify major water related impacts
- Some impacts can cause project delays and significant permitting or mitigation costs

#### WATER RELATED IMPACT SUMMARY

| County   | Harrison    | Route N       | lo. US 27   | Item No. | 6-1053.00 |
|----------|-------------|---------------|-------------|----------|-----------|
| Date     | 11-08-07    | Program       | n# 7370501D |          |           |
| Federal  | Project No. | BRO 0272(10   | 1)          |          |           |
| State Pr | oject No.   | FD52 049 002  | 7 006-007   |          | - T I     |
| Location | n Engineer  | Brad Eldridge |             |          |           |

#### Section 1: Impact Checklist

Complete this section for each alternative considered at the conclusion of Phase 1 design.

| FEMA Study Type                                                                                                                                                                                    | Yes      | Community No.       |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|---------------------|
| Detailed FEMA Study with delineated floodway*                                                                                                                                                      |          |                     |
| Detailed FEMA Study without delineated floodway*                                                                                                                                                   |          |                     |
| Approximate FEMA Study                                                                                                                                                                             |          |                     |
| No FEMA Study                                                                                                                                                                                      |          |                     |
| * May require initiation of the map revision process if<br>elevations cannot be avoided. Potential impacts to flu-<br>shall be assessed early in the project. Refer to Section<br>Drainage Manual. | oodplair | ns and/or floodways |

| Are open sinkholes impacted?<br>If so, how many sinkholes are impacted?                                                                                                   | Yes | No |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|----|
| Are wetlands impacted?<br>If so, how many total acres are estimated? acres                                                                                                | Yes | No |
| Are any of the streams in the project area designated "Special<br>Use Waters" impacted (e.g. Wild Rivers, Exceptional Waters,<br>Outstanding State Resource Water, etc.)? | Yes | No |

When it becomes impossible to avoid a significant resource, the project should be designed to minimize these impacts. Significant resource impacts are discussed in DR 202 of the drainage manual. Wetland impacts and their costs are also discussed in DR 500 of the Drainage Manual.

Projects that impact special use waters may require an individual KPDES Erosion Control Permit. Contact the Division of Environment analysis for more information.

| STREAM CHANNEL IMPACTS                                                                                      | 1 1 | -  |
|-------------------------------------------------------------------------------------------------------------|-----|----|
| Will stream relocations (channel changes) be needed?<br>If so, how many total linear feet are estimated? LF | Yes | No |
| Will new culverts or culvert extensions be constructed?                                                     | Yes | No |
| Will temporary stream crossings be needed?                                                                  | Yes | No |
| Will excess material sites that require permitting be needed?                                               | Yes | No |
| Will bridges be constructed?                                                                                | Yes | No |

On highway projects that involve stream crossings such as bridge and culverts, it is often not feasible to totally avoid stream channel impacts. In these cases, design the project to minimize the impacts. Stream relocations should be avoided if possible. If stream relocations are unavoidable design to project to minimize their impacts. Stream channel impacts are discussed in DR 500 of the drainage manual.

#### Section 2 : Impact Discussion

Complete this section for the chosen alternate. Discuss the selected alternate's influence on each of the impacts listed above. Discuss any avoidance, minimization and/or mitigation measures included in the project.

# Boring & Jacking of Pipe

### Boring & Jacking of Pipe

- Railroad involvement may require specific criteria.
- We have specs that cover boring and jacking of: encasement pipes section 706, and a combination encasement-carrier pipe in special note 11E
- Be sure to include bid items and any special requirements in the contract documents

# Please Wake Up and Head To Your Next Presentation

Thank You Questions?